Mahmoud Abumandour

+ 1 (788) 320-8958 |BC, Canada | mahmoud_abumandour@sfu.ca | Website | Linkedin | GitHub

Simon Fraser University	Sep 2024 – Present
Ph.D. in Computer Science (GPA: 4.0)	BC, Canada
Simon Fraser University	Sep 2022 – Aug 2024
Master of Science in Computer Science (GPA: 4.0)	BC, Canada
Thesis: Resilient Neural Networks at the Edge: Uncovering and Mitigating Bit-Flip Vulnerabilities	5
Mansoura University	Sep 2017 – Jul 2022
Bachelor of Computer and Communication Engineering (GPA: 3.96, ranked first over 180 students)	Mansoura, Egypt
Experience	
Simon Fraser University	BC, Canada
Graduate Research Assistant	Sep 2022 – Present
• Devised the first semi-black box bit flip attack against quantized DNNs (destroys Llama 3 2B v over 80% probability)	with 25 bit flips with
• Explored hardware/software defenses & Implemented a software redundancy defense, redu	icing attack success
probability to less than 1% while incurring less than 1% performance overhead on average	
Teaching Assistant	Jan 2023 – Presen
Conduct tutorials and lab sessions, grading assignments and exams, and providing support	during office hours
Courses: Intro to Computer Systems, Principles of Compiler Design, Computer Architecture	
Intel Corporation Sa	nta Clara, CA (Remote)
CPU Architecture Intern	Jan 2024 – May 2024
Researched, modelled, and assessed CPU front-end features, including instruction prefetching	ng and caching
• Performed in-depth workload analysis to categorize based on instruction cache footprint and	d branch behavior
Conducted comparative studies between functional and cycle-accurate simulators and ident miscorrelation	ified sources of
Google Summer of Code (RTEMS)	Remote
Student Developer	May 2022 – Sep 2022
• Achieved 8x speedup over the previous release notes generator by using a multi-threaded a	architecture
Automated release data fetching from RTEMS bug tracker and Markdown to RST & PDF ger	neration
Master Micro	Cairo, Egypt
Software Engineering Intern	Oct 2021 – Feb 2022
• Designed a range format for an EDA design lookup table file, reducing query time by 50% or	ver a binary format
Google Summer of Code (QEMU)	
Student Developer	May 2021 – Aug 2021
	ustom workloads
 Implemented multi-core, multi-level cache performance emulation of user-space and full-state 	ystern workidaus

PROJECTS

- <u>C Compiler in Rust & LLVM</u>: Compiled a subset of C and supported two backends: LLVM and native x86_64
- <u>Fuzzing with RISC-V Emulation</u>: Developed a RISC-V 64-bit functional emulator for userspace fuzzing. Increased test generation throughput by over 16x (linearly with available resources) over single-core performance
- Database Engine (RheaDB): Implemented a disk-oriented DBMS with SQL support, in-memory pool caching, B+ Tree indexing, and JDBC driver
- <u>AES Encryption Core</u>: Designed a low-power AES encryption core for FPGA. Reduced area and power consumption by more than 80% over a high-throughput pipelined design
- <u>Hyperthreaded, Software-Interlocked RISC Processor</u>: A multi-threaded five-stage pipelined RISC core for FPGA and a custom assembler with software interlocking, achieving 5x more throughput over single-threaded execution

SKILLS

Programming Languages: C++, C, x86 Assembly, Rust, Python, Bash Scripting, Java
Tools: Gem5, LLVM, Git, Docker, Valgrind, perf, PyTorch, Tensorflow
Platforms: Linux, QEMU, FPGA, ARM Cortex M4, Raspberry Pi
Hardware Design Tools: Xilinx Vivado, ModelSim, SystemVerilog, VHDL

OPEN-SOURCE CONTRIBUTIONS

- SerenityOS: Defined a global OS versioning API. Increased user-space utilities POSIX compliance. Improved the SerenityOS DBMS SQL support
- **QEMU**: Modernized the usage of locking and memory allocation APIs by using scope-based locks and automatically freed allocations. Redefined plugins' configuration syntax adhering to modern QEMU CLI syntax